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Background:

This program of research was initiated with the submission in June 10, 1997 of the

proposal entitled

"Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms,"

The original starting date for the proposal was suggested as July 14, 1997. Nearly 11

months later, on 5/1/98, the project was initiated with an award of $20,000 that was split

between researchers at the University of Florida and the University of South Carolina.

The original statement of work in the proposal called for

"... a focused plan of research.., to extend [the authors] recent contributions

to multiresolution and wavelet analysis to derive, develop and implement:

(i)

(ii)

(iii)

wavelet based methodologies for the compression, transmission,

decoding, and visualization of three dimensional finite element

geometry and simulation data in a network environment,

methodologies for interactive algorithm monitoring and tracking in

computational mechanics, and

methodologogies for interactive algorithm steering for the

acceleration of large scale finite element simulations."

The original budget for the above statement of work was $252,200. During the

contractual period, the project monitor Dr. Jerrold Housner moved to a different position

at NASA Langley Research Center, and the project ceased to be funded. A total of

$20,000. was awarded in total to the principal investigator at the University of Florida,

and co-principal investigator at the University of South Carolina towards the research

project.

Even with a nearly 11 month delay in the disbursement of startup funds, a decrease in

requested funding of less than 9% of the requested budget, and the removal of the

contract monitor within NASA Langley, the research team was made unusually strong

progress towards the completion of the research outlined in this proposal.

Motivation

The effective utilization of many large scale numerical simulators requires an interactive

capability to judge validity of the model chosen as well as the accuracy and efficiency of

the solution procedures applied. Using their best scientific judgment, the scientist must be

able to rapidly modify simulations for improvement in the fidelity of simulations, or to

effect design changes in a collaborative environment. Performing this work on remote

parallel machines poses special problems which must be resolved for effective utilization

of these resources in meaningful applications. Historically, a diverse collection of

parallel computational techniques have been developed for a wide class of

multiprocessor hardware in order to iteratively solve systems of linear equations



associatedwith structuralanalysis,to approximatesolutionsof coupleddesign
optimizationproblems,or to obtaintime accuratesolutionsof aerodynamicflowsover
complex aerospacevehicle geometries.However,to enablesimultaneousor collective
useof thesetoolsby differentanalystsin differentlaboratories,via virtual environments
thatnecessarilyoperateover networks,it isabsolutelyimperativethat anumberof asyet
unsolvedtechnicalbarriersmustbeovercome.

Summary of Accomplishments:

The first year of research completed a focused plan of research that

specifically addressed such technical barriers;

1. Originally designed specifically for the Intel Paragon architecture, the tracking and

steering controller library (Kaulgud, A. and R.C. Sharpley. 1995. An Interactive

Tracking/Steering Library. IMI Report 95:10. Department of Mathematics, University of

South Carolina, Columbia, SC (Aug.)) was ported by project personnel to the general

message passing language MPI (W. Gropp, E. Lusk and A. Skjellmun, USING MPI,

Portable Parallel Programming with the Message-Passing Interface. The MIT Press,

Cambridge, 1995.) for use with massively parallel MIMD machines.

2. Additional improvements were made to network code components of the

tracking/steering library to permit secure use of the library through firewalls. This was

tested using a fluid flow in porous media model (for a description, see L. Scott Johnson,

A. Kaulgud, R.C. Sharpley, R.E. Ewing, Z. Leyk, J. Pasciak, M. Celia, and J.R. Brannan,

Integration of Contaminant Transport Simulators on Parallel Machines with a Graphical
User Interface for Remote Interactive Modeling, in Proceedings of the 1997 Simulation

Multiconference," Atlanta, April 1997, Soc. for Computer Simulation International, San

Diego.) over the vBNS network between the University of South Carolina and Texas

A&M University.

3. The researchers continued to extend their earlier contributions to multiresolution and

wavelet analysis to derive, develop and implement wavelet-based methodologies for the

compression, transmission, decoding and visualization of multidimensional finite

element logically rectangular geometry and simulation data in a networked environment.

The wavelet library WV was further refined, incorporating encoding algorthims

including the bitstream encoder ofGao, et al (Z. Gao, A. Andreev and R.C. Sharpley,

Data Compression and Elementary Encoding of Wavelet Coefficients, IMI Report 97:02,

Department of Mathematics, University of South Carolina, Columbia, SC (Jan. 97)).

On-line documentation of WV and a web-based demo of application codes for data

compression and feature extraction are respectively available at

http://www.math, sc.edu/-sj ohnson/wvlib/

http://www.math, sc.edu/-sjohnson/wvlib/demo/



4. Theresearchteamextendedits methodologiesfor handlingotherclassesof simulation
dataovernetworkenvironments.Theseefforts includedthe developmentof
multiwavelet,divergencefreeformulationsamenablefor thecompressionand
transmissionof flow field simulationsasdiscussedin

Multiwavelets and Particle Image Velocimetry Methods, A. Kurdila, O. Rediniotis, T.

Strganac, J. Ko, 40 th Structures, Dynamics, and Materials Conference, AIAA Paper

Number AIAA-99-1309.

5. The research team has likewise extended its applications of multiresolution-based

simulation methods to include reduced order model representations of dynamical systems

appearing in classical aeroelastic studies. In this paradigm, low dimensional models are

derived via multiresolution and wavelet methods from classical, high-dimensional FEM

models of coupled fluid-structural interaction problems. The low order models enable

the possiblitity of network simulation and real-time transmission of simulation results to

remote sites for evaluation by engineers. The technical results are summarized in the

publication

Multiresolution Methods for Reduced Order Models for Dynamical Systems, A. Kurdila,

C. Prazenica, O. Rediniotis, T. Strganac, 40 th Structures, Dynamics, and Materials

Conference, AIAA Paper Number AIAA-99-1263.

The details of these latter two contributions discussed in (4) and (5) above are included in

the technical attachments.



Appendix (I)

Multiwavelets and Particle Image Velocimetry Methods, A. Kurdila, O. Rediniotis, T.

Strganac, J. Ko, 40 th Structures, Dynamics, and Materials Conference, AIAA Paper

Number AIAA-99-1309.
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Multiwavelets and Particle Image

Velocimetry Methods

Andrew J. Kurdila*

Department of Aerospace Engineering, Mechanics, and Engineering Science,

University of Florida, Gainesville, Florida 32611-6

Othon Rediniotis*, Thomas Strganac §, Jeonghwan Ko*

Department of Aerospace Engineering,

Texas A&M University, College Station, Texas 77843-3141

Abstract

In recent work the authors multilevel filtering for the

analysis of digital Particle Image Velocimetry (PIV)
based on multiresohition analysis. The essential
contribution of this work was twofold. We sought to

demonstrate the feasibility and amenability of
wavelet based methods for local filtering and cross

correlation calculations required in PIV methods.
This work focussed on the derivation of windowed

cross-correlation expressions for wavelet-based

expansions that are not orthogonal (or biorthogonal)
over the cross-correlation window. The methodology

makes use of recently introduced "refinable

functions" and generalized connection coefficients
derived in wavelet-based finite element methods. In

addition, we sought to develop divergence-flee bases
for flow modeling and order reduction. This paper
extends these recent developments by deriving

multiwavelet constructions applicable for the analysis
of PIV. In contrast to our previous work, (1) the

techniques herein make use of multiple scaling
functions, (2) the local cross-correlations do not

require "boundary modifications" that are
computationally expensive, (3) the derived wavelet-
based multiresolutions are orthogonal over the

interrogation window, and (4) the same
multiwavelets yield constructions of simple

divergence free bases suitable for order reduction.

(1) Review and Motivation
To motivate the derivation of wavelet-based

PIV algorithms that follow, we briefly review the
methodology derived in Ref. 26. Frequently,

instantaneous planar velocity, distributions are

Associate Professor, Member AIAA

*PostDoctoral Research Associate, Member AIAA

§Associate Professor, Fellow Member AIAA

tCopyright © 1999 by the authors. Published by the
American Institute of Aeronautics and Astronautics with

permission.

derived from two captured images, separated by a

known time interval, by cross-correlating

corresponding sampling windows in the two images.
In _pical approaches 3, the image data from a window

(for a 512x512 image, a t_pical window size is 32x32

pixels) taken in the first image and that from a
window at the same position in the second image are
cross-correlated. Consider the two consecutive

images. We let f(k,1) and g(k,l) represent the pixel
intensities (typically 0-255) at pixel locations (k,l) in

the first and second images, respectively. From any
of a number of texts (see for example, Shapiro and

Rosenfeld :1) treating digital image processing, we
find that the discrete normalized cross-correlation

R(m,n) associated with discrete functions f(k,l) and

g(k,l) is given by:

: :[ _i_...._)*::_::::,...........::::::::::::::::::::::::::::::..........i ............ili_ii:_::i_:ii_i_

iiiii?i)_;::i::: /::i_ _/_i_?::i::::::i:@_i::_*i:::i:_;::i_!iiii_ii::i_ii_i::::iiii:::ii::i?i :_ _:_:i_
(1)

In this expression, the function R(m,n) measures the
correlation of the discrete functions f(k,/) and g(k,l)

when they are relatively shifted by (re, n) pixels. We

do not explicitly express the limits of summation, as
this will clearly depend on the window size and
location. The location of the cross-correlation peak

gives the mean displacement of the particles in the
interrogation window. This process is repeated by

moving the window, until the entire image is
covered. In Ref. 3, inaccuracies are introduced by
the fact that the window in the second image is at the

same location as the window in the first image. This

could yield erroneous predictions since some of the

particles in the first window could, due to their finite
velocity, move outside of the interrogation window.
The likelihood of erroneous predictions of the

particle displacement grows as the flow velocity or,

equivalently, the displacement increases. Moreover,
the successful performance of the cross-correlation

I
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requiresthe useof a ratherlargeinterrogation
window,typically32x32pixels.The algorithm
returnsa singlevelocitypredictionfor theentire
interrogationwindow,therefore,all of thepoints
within thewindow are assumed to have the same

uniform velocity, and any spatial velocity gradients
within the window are missed altogether. This
restriction, can be somewhat alleviated by

overlapping the interrogation windows. In general,
for a 512x512 image, the velocity map has a grid size
of 16x16. This resolution is inadequate when fine

length scales are to be resolved. The determination of
a local maxima is clearly difficult without significant

filtering.

As shown in detail in Ref. 26, it is possible to derive

an expression for the windowed un-normalized cross-
correlation for functions in 1D expressed in terms of

wavelet expansions as

= fk&Fk_,_m,Z_¢_,_m
k l m=0

(2)

where the coefficients F_°'z° are the so-called

connection coefficients, or refinable integrals. In

two dimensions, the cross-correlation becomes

_( 2-J _:1,2-g_=)= ZZ Zfk."&.oFff'O-','-_,-'_-"F_O2-P.°-_2-_-P

The expressions for the wavelet-based local cross-

correlations in equations (2) and (3) allow local
wavelet filtering, and the development of multilevel

methods. As an example, the performance of these

multilevel algorithms is summarized in Figures (1) -
(9), which show that the multilevel filtering can be

effective in improving the fidelity of cross-
correlation calculations. For example, Figures (1) -

(4) show that local cross correlations can be
recursively calculated to improve local maximum

identification using the multilevel algorithms
described in Ref. 26. If the simple multilevel

filtering algorithm (zero-pass coarse, all-pass details)
depicted in Figure (5) is employed, highly accurate

velocity fields can be reconstructed as depicted in

Figures (6)-(9).

Still, the cross correlation expressions in equations

(2) and (3) are obviously more complicated to

implement than the conventional cross-correlation
depicted in equation (1). Simply put, the complexity

of the former expressions can be attributed to the fact
that the selected (Daubechies compactly supported)

wavelets employed in Ref. 26 are not orthogonal over
the interrogation window. In this paper, we derive
new classes of multiwavelets that are indeed

orthogonal over the interrogation window. With
these new classes of wavelets and filters, the

calculations required to implement wavelet-based
k_, t.... p PIV methods are greatly simplified. Tables (1) and

(_ ,-o,o Fo.o "_(2) list the newly derived filters corresponding to the
= 2.,g_.o[ZL ZLJk_,_k-_-_,.z-¢,-_ ..... -p.°-6-n-P|orthogonal multiwavelets developed precisely for

1.o k. k#, m,p ,/ . . .
local mterrogatton windows.

= ___gl.oM(l-gt-rn, o-gz -s 2 -p)
I,o

We note the following :
(3)

(i) The integrals defining i-'°'° are not trivial to
$,t

calculate in general. For many cases of interest,

the wavelet scaling functions _ comprising the

integrals cannot be expressed in closed form.
(ii) Numerical methods exist for calculating the

entries F°_° to any degree of precision.

Techniques for evaluating these integrals are
discussed in Ref. 23 and Ref. 24.

(iii) Once the entries of F °'° have been calculated

numerically, they can be stored and applied very

rapidly. The number of nonzero entries in F °'° is
$,t

proportional to the length of the mask defining
the wavelet.

(iv) The entries of ooF'_,_are different for different

(families of) wavelets.

Finally, it has been shown in Ref. 27 that divergence-
free wavelet bases derived from the work in Ref.

(28),(29),(30) can provide the foundation for order
reduction methods applicable to incompressible
flows. We conclude this paper by deriving

divergence-free multiwavelets from the same

underlying orthonormal multiwavelets used in the
multilevel filtering operations described above.

(2) Multiwavelets and Multiresolution Analsysis

The essential difference between the methodology

introduced in this paper, and the earlier work by the
authors in Ref. 26, 27 is that we make use of a
collection of r real-valued, scalar functions to

generate the multiresolution. In vector form, the

scaling functions (or generators) and wavelet
functions are denoted

American Institute of Aeronautics and Astronautics



,, .'
• (_)=__. 'm)=1 )

Carefully note that the superscript denotes the

specific generator in a family of generators. The
translates and dilates of the scaling functions and

wavelets are given by

CI)j.k(x) =

¢;'_('_)l

¢,,k( )

%,k(x)=

In these equations we have introduced the usual
shorthand notation

f,.k (x) = 2J/2f(2'x-k)

Each vector of scaling functions and wavelets
satisfies a matrix two scale relationship, shown

below.

• (x)= Y_,_[a,],,.,(2x-k)

v(x)= X _[b,]¢ (2x- k_)
k

.,., (x)=Z [,,]*,+,.2_+,(x)
$

%,,(,_)=Z[b,]*,+,,2,+,(,O
$

In this paper, we will deal with orthonormal families
of multiwavelets. Specifically, we will employ a

family of multiwavelets derived in Ref. 35 using the
intertwining techniques described in Ref. 34. The

requirements that the multiple scaling functions and

multiple wavelets defined above are orthonormal
manifests itself as conditions on the matrix masks.

The requirement that the generators and wavelets are
orthonormal to themselves is easily derived from the

identities

I. (x). r(x- k)dx = 8 o.,. I
R

'e(x)'t'" (x - k)da- = 8.., •1
R

Upon expansion, we have

fx _[a }t, (2x- s)z * '(2x- 2k - m_'2[a,,,]rdx
R* ut

-- . . 2 "q_[a ]I_ (2x - s)O r(2x- 2k- m)_&-v_[a,,]

= _2[a]_ a;, _.:,+,_,[,_] = 2_,,,,. I

Hence, the masks defining the generators and the

wavelets must satisfy

x 2[a2,_.,l[a,.] r = 28 ,,.,. I
t_

=2[b:,,_][b]' =250.,.z
tll

In addition, we require that the generators and
wavelets define (orthogonal) complementary spaces.

That is, the generators are orthogonal to the wavelets

on any fixed level•

_ (x)'e r (x- k)_& = 0
R

When we expand these expressions, we obtain

Ix 4"2[a_(2x- s)'." * r(2x- 2k- m)V2[b,,]* dv = 0
I ,11

4_[a ]I¢(2x- s)* _(2x- 2k- m)dx4_-[b..]_ = 0

Thus, the generators will be orthogonal to the
wavelets on the same level provided that the masks

satisfy

y_.,[a=,+,,,][b_,1" =0

The specific set of orthonormal multiwavelets
considered in this paper are depicted in Figures (14)

and (15). Their matrix masks are summarized in

Tables (1) and (2).

For the derivation that follows in the next section, we

will likewise have occasion to interpret the wavelet
identities above in terms of the Z transform, ff

[h,] n ..... 2,-1,0,1,2,.-. is a sequence of

matrices, the formal Z transform of the sequence is

defined to be

H(z) = _--'[h.]z-"
nEZ

Sometimes we simply refer to this as the frequency

domain representation of the sequence

[h,] n = .... 2,-1,0,1,2,.... In any of a number

of standard texts, it is shown that wavelets can be

interpreted as a two channel filter bank depicted in
Figure (16). The two channel filter bank is

comprised of a cascade of convolution, upsampling
and downsampling operators. It is not difficult to
show that the mapping from input to output in the

American Institute of Aeronautics and Astronautics



two channel filter bank depicted in Figure (16) can be
derived as

y,(z) = ½[H(z)X(z)+ H(-z)X(-z)]

y.(z) = _[G(z)X(z)+ c;(-z)X(-z)]

ny,+ay:
= 4{Ft(z)H(z)X(z) + B(z)H(-z)X(-z)

+_,.)G(z)X(z)+&z)G(--,.)X(-z)}

= + {ITt(z)H(z) + _(z)O(z)IX(z)

+½ {bI(z)H(-z) + G(z)a(-z)}X(-z)

Conditions that are sufficient to guarantee that the
input to the filter bank exactly matches the output of
the filter bank can be seen by inspection to be

_I(z)H(z) + G(z)G(z) = 2I(z-' )

H(z)H(-z) + G(z)G(-z) = 0

These two conditions are referred to as the perfect
reconstruction, and alias-canceling conditions,
repsectively. A two channel filter bank that satisfies
these conditions defines a family of biorthogonal
multiwavelets and their associated multiresolution

analyses.

(3) Simple Divergence-Free Multiwavelets

As shown in Ref. 27, divergence free wavelets can
be employed in many postprocessing tasks associated
with particle image velocimetry. During numerical
experiments carried out in Ref. 27, it was found that
the treatment of finite domains typically encountered

in digital PIV image processing proved to be
particularly troublesome. In this section, we show
that a very simple modification of the methodology
suggested in Ref. 33 yields families of divergence
free multiwavelets. The construction is trivial, in

fact, if we are given an original orthonormal
multiwavelet basis system.

Suppose we are given the orthonormal multiple
scaling functions and wavelets as discussed in
Section (2). In this case, it is trivial to show that the
derivatives of the generators satisfy a two scale
relationship of their own.

¢_(x)= ¢'(x)= _ 242[a,]¢'(2x- k)
k

•. (x)= E -,/-J[a..,],l,. (2x- s)

where the new set ot"masks are defined to be

[a_..,.] = +2[a]

Similarly, we can define candidate multi-wavelets as

V. (x) = Y_ _/2[b j ],I,_ (2x - s)
.v

where

[b_.,] = +2[b,. ]
It is important to note that the candidate functions

cI)_(x), W (x) above do not constitute an

orthonormal system of scaling functions and
generators. In a similar fashion, we can construct
candidate multiple scaling functions and wavelets by
integrating the original orthonormal generators and
wavelets. In this case, the associated two scale
relations can be written as

_, (x)= Y_,_/2[a:.,],_,. (2x- k)
k

_t' (x)= Y_-,/-2[b a]_ (2x-k)
,_.

where

Again, we emphasize that the multiple set of scaling

functions _+ (x), W+ (x) do not constitute an

orthonormal set of multiwavelets. However, the two

sets of functions (__ (x),__ (x)) and

(_+ (x), _+ (x)) do constitute a set ofbiorthogonal

multiwavelets. This is easily seen by observing that
the Z-transform of the masks associated with each of

these pairs of functions satisfies

&(z) = +_ A(z) B+(z) = +_ B(z)

A_(z) = +2a(z) B_(z) = +2B(z)

As a consequence, we have

A,(z)A. (z-')r = (+__A(z))(+2A(_z)r ) = A(z)A(_z):' = I

B. (z)B.. (z-')_ = (+ +B{ z))(+2B(-z )' ) = B(z)B{-z) _ = I

a (z)B. (z-')_ = (+ + A(z))(+2 Bf-z)") = A(z)B(-z) T = o

R. (:)a_(z")_ = (+ _ B(z))(+2 a(-:) _) = ,_(z),4(-z) _ = o

However, the above set of equations simply
guarantees that the two channel filter bank
associated with the differentiated functions

American Institute of Aeronautics and Astronautics



t_ (X),_ (X) and the integrated functions

_+ (x), _+ (x) satisfy the perfect reconstruction and

anti-aliasing conditions derived in Section (2).

From these observations, it is relatively simple,

although algebraically tedious, to construct simple

divergence free bases. While the details exceed the
scope of this short note, a multiresolution analysis

comprised of divergence free multiwavelets can be
constructed in terms of the primal bases

I-v .
q, °'.2= [,v j

(t ':°.".' I_dp( x )v _( y )j

=
I J

and their respective dual bases

{°t= 0,,.0,.:e:=

{°t0(,.,,., = 0, .,_,e: = tg(x)tg ..(y)

The reader should carefully note that we have

suppressed the superscript denoting the specific

generator (or waveleO in the list of multiple
generators (or wavelets). That is, each basis
appearing on the right hand side of these equations

should have a superscript that runs between 1... r.

However, with this notational convention, we can

succinctly state the multiresolution decomposition of

divergence free subspaces of the square integrable
functions as

Each f e (L2(R))2N{f: divf= 0}

.,,z,,,e',,,,,_z_z ,,,,,.k,f,.),..,,j,,(x,y)J

Again, for notational simplicity, it is understood that
the above summations are earned out over all the

specific elements of the r-vectors of generators and
multiwavelets.

Conclusions:

In this paper, we have reviewed recent work by the
authors that derive (I) multilevel filtering methods

and (ii) reduced order divergence-free bases in terms

of orthonormal, and biorthogonal wavelets,

respectively. It was noted that the first set of
algorithms for multilevel filtering could be expensive

to implement because the selected wavelet bases are
not orthogonal over the interrogation window. In the

second set of algorithms, a biorthogonal basis system

was employed that is unrelated to the orthonormal
system employed for multilevel filtering. In this

paper, we summarize a set of orthonormal
multiwavelets that have been derived via intertwining

techniques to address these deficiencies. In short, the
derived multiwavelet bases (i) are orthogonal over

the PIV interrogation window, (ii) yield fast, local
cross-correlation calculations that are amenable to

multilevel implementations, and (iii) can be used to
derive simple divergence free bases for

incompressible flow modeling order reduction.

Algorithmic implementation and performance are
discussed in a forthcoming paper.
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Table (1) Matrix masks for multi-scaling function filters
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Abstract

This paper derives reduced order input-output models
for a class of nonlinear systems by utilizing wavelet

approximations of kernels appearing in Volterra series

representations. While Volterra series representations
of nonlinear system input/output have been understood
from a theoretical standpoint for some time, their

practical use has been limited owing to the
dimensionality of approximations of the higher order

(nonlinear) terms. In general, wavelet and
multiresolution analysis have shown considerable

promise for the compression of signals, images and,

most importantly for this paper, some integral
operators. Unfortunately, causal Volterra series

representations are expressed in terms of integrals that
are restricted to products of half-spaces, and there is a

significant difficulty in deriving wavelets that are

appropriate for Volterra kernel representations (i.e., that
are restricted to semi-infinite domains). In addition, it

is necessary to derive Volterra kernel expansions that
are consistent with the method of sampling used to

obtain input and output data. This paper derives

discrete approximations for truncated Volterra series
representations in terms of a specific class of

biorthogonal wavelets. When employing a zero order
hold for both the input and output signals, it is shown

that a consistent approximation of the input/output

system is achieved for a specific choice of biorthogonal
wavelet families. This family is characterized by the
fact that all of the wavelets are bio__hogonal with

respect to the characteristic function of the dyadic

intervals employed to def'me the zero order hold. It is

Copyright © 1999 by the authors. Published by the
American Institute of Aeronautics and Astronautics

with permission.

also simple to show that an arbitrary choice of wavelet

systems will not, in general, provide a consistent
approximation for arbitrary input/output mappings.

Numerical studies of the derived methodologies are

carried out using experimental pitch-plunge response
data from the TAMU Nonlinear Aeroelastic Testbed.

Introduction

A large collection of methods have been investigated

for obtaining reduced order representations of linear
and nonlinear dynamical systems in structural
mechanics, fluid mechanics, aeroelasticity and control

theory. These methods include such diverse strategies

as modal synthesis, Ritz vector reduction, rational

approximation, Hankel approximation and proper
orthogonal decomposition (POD). In fluid mechanics,

the study of the underlying qualitative dynamics of
various classes of flows using POD has been carried out
in 24,26 In these studies, the essential goal is often to

study the topological dynamics underlying the more
complex model 26._. 24 Sometimes, the ultimate goal

is the develo[_ment of control experiments or
methodologies 3° In structural mechanics, Ritz basis

reduction methods denoted "component mode

synthesis" have emerged as a distinct discipline [see
Craig, 1981]. Order reduction methods designed to

preserve the fidelity of specific measurements,
observations or performance functionals have been

studied in linear control theory [see Skelton, 1983].
Similarly, some researchers have employed reduced
basis methods in the simulation and control of the

nonlinear Navier-Stokes equations 3o.27,28 More

1
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recently, component mode synthesis methods have been

studied for a class of open loop simulations of
40

aemelastic systems

One common feature of most of these methods is that

they are not directly amenable to online updating or

adaptive "response subspace" selection strategies. For

example, the authors have shown that geometrically
nonlinear control methods can be extremely effective in

some applications to nonlinear aeroelastic control 4_.

These strategies rely on an accurate reduced order

model of the nonlinear open loop dynamics. At the
same time, the authors have shown that some POD
reduced basis methods can be extremely effective in

generating low-dimensional approximations of
uncontrolled flow. As an example, the authors have

studied the efficiency of POD methods for obtaining
reduced order models of synthetic jets m 38. The

performance of this approach for studying a particular
response regime is discussed in detail in 3s. By

including the four POD modes, three of which are

depicted in Figures (1) through (3), 99% of the total
energy of the flow is captured by the reduced order
Navier-Stokes simulation, as shown in Figure (4).

O-
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Figure 1: POD Mode 1, Rediniotis, Kurdila, ref(38)
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I Figure 2: POD Mode 2, Rediniotis,Kurdila, ref(38)

We emphasize that this study considers an uncontrolled
response regime. The difficulty, however, is not
associated with producing a single reduced order model

that captures the essential dynamics of a particular

operating or flow regime. Rather, ff the overall goal of

the model order reduction is to enable control of the

rsterm the reduced order model must be accurate over

o-,..........:, ..... -
.a_ ........... I (_. , '.',_,tl_.,'J_",. _ ,v, .....

...................! .,,:: :::::::::::: ! _1 _g" :
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Figure 3: POD Mode 3, Rediuiotis,Kurdila, ref(38)
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Figure 4: %Energy retained in reduced POD basis
simulation, Rediniotis & Kurdila, ref(38)

a diverse family of response regimes. In other words,

because the express purpose of control is to alter

(usually drastically) the system dynamics, any model
derived from the response history of the open loop,

uncontrolled system may be a very poor approximation

for the closed loop system dynamics. This fact is well
understood, and well documented, in the control theory

and linear system theory literature [see for example,
Skelton 1983 and the references therein].

Unfortunately, the problem is compounded in many
applications to aemelasticity or fluid mechanics in that

the governing Navier-Stokes equations are inherently
nonlinear. Some of the richest theory available for

treating order reduction problems have been derived in

the context of linear system theory.

In this paper, we present a methodology that is directed

precisely towards achieving efficient reduced order
representations of a class of nonlinear systems that is
amenable to adaptive and online control methodologies.

If we acknowledge that the underlying dynamics are

nonlinear a priori, a reasonable starting point is to
choose one of the standard nonlinear system
parametehzations. Possible choices include Fliess

functional expansions, Chen series or Volterra series.
Silva in 43 studies the identification of Volterm series

from impulse response for aeroelastic applications. We
will consider the identification of similar systems, but

for general input/output histories.

2
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Volterra Operators and Approximation

In this paper, we will consider those dynamical systems

expressed in terms of Volterra integlal operators, and
restrict our attention to single-input/single-output

systems. The output y(t) can be written formally as the
infinite sum

as

y(t)=y,(t)+ y=(t)+ y3(t)+... (1)

where each term yi(t) is the output of the i th order

Volterra integral operator. For i= 1 or i=2, we have

y,(t)= y h,(t-_)u(_)d_ (2)

y:(t)= S'Y_h2(t-_,t-rl)u(_)u('q)d_drl (3)

where the input is u(t). The theoretical foundations of
the Volterra series in equation (1), sufficient conditions

for its convergence and the form for higher order terms
can be found in 42. In this paper, we are concerned only
with the first and second (i=l,i=2) order terms of the
Volterra series.

Now, we introduce the characteristic function Z(t) of

the unit interval [0,1]

10 t _ [0,i]X(t) = otherwise
(4)

and its scaled and dilated translates

aS

_ j._(t) = 2j': X(2Jt - k)

={20J'2 otherwise2Jt-ke[0'l]

k2 -s < t < (k + 1)2 -j (5)

We can obtain a zero-order hold approximation of the

input by writing

A

u(t)=]_us.,X,_(t ) (6)
k

After some tedious algebra, it is shown in 39 that the

zero order hold approximation of both the t'u-st and
second order kernels of the Volterra series is simply

Yj.n----_I_,.I,sUj ..... 1 + _'_ _ hl.(r.l)'_),n-r-I _./ ..... 1

J:n-I r=n-I/=n-1

(7)

where

(8)

Thus far, we have shown that the zero order hold for

both input and output induces the discrete Volterra

Series m equations (7) and (8). We now show that the
discrete integrals in equation (8) are amenable to

wavelet induced multilevel approximation. Suppose

that the first order kernel h t is approximated as

h_(_):Y,h_.,.,_,.,(_) (9)
p

where the only assumption on the functions q_j._ at this

point is that they are dual to X_., in the sense that

_q)j.,Xs., =St, (10)

The first order term in equation (7) becomes

.,,.

y_.j.,, = _h_.j.,ff cp,.,,(s)x,.,._,_,(s)ds.u,.j,

(11)

which can be rewritten as

(12)

Likewise, if we approximate the second order kernel as

h=(g,n)= Zh=.s.i,.,l_,l,.,l(_,rO
(13)

and substitute this kernel in equation (8), we recover,
for the second order term in equation (7)

z ._,_,g)x,.....,(n)a an.u.,,,,.

Y2j., =. y. h_j.(,,)8¢,.,).(,_kq ..... ,)uj.,u,,
*r.m,r,a

k,m .....

(14)

y:j., = _ h_o.p)u_.'-'-t us.,-p-_

3
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Indeed, equations (12) and (14) iUustmte that, so long
as the approximating family is biorthogonal with

respect to the characteristic functions Z j.,, we obtain

the discrete input and output Volterra Series derived in

equations (7) and (8) by a zero order hold of input and

output. In the next section, we discuss the specific
selection of a biordaogonal wavelet basis to achieve the

desired approximation order and order reduction.

Biorthogonai Wavelet Approximations

In the last section, we showed that a consistent

approximation of the discrete Volterra input - output
mapping is achieved when kernel approximates are
selected to be biorthogonal with respect to

characteristic functions of dyadic intervals. In this
section we discuss a class of biorthogonal wavelets that

satisfy this condition and induce a multilevel
approximation of the Volterra kernels. Recall that a
multiresolution analysis is a nested sequence of spaces

{v,},..

•..v_,c r/oc v,,c v,... (15)

where Vo is the span of the translates of a fixed function

9.

Vo=Span{9(x-k)} (16)
kc, Z

In this equation, Z is the collection of (signed) integers.

The remaining spaces in the sequence of equation (15)

axe defined by dilation. We define

9j.i(x)=2J'9(2Jx-k) (17)

and subsequently

Vj=Sp_n{9 i.,} (18)

If we have a second multiresolution {_}i`,z generated

by the function _, we say that the pair {V,L _ and

{_}i`_zfOrm a biorthogonal multiresolution provided

that

(9 j.,,_,,.) = !9 j.i (̀x)_.,,,(x)dx = _5,.,,, (19)

A wavelet _g is a function whose dilates and translates

span the complement spaces Wj defined via

Vj+, = Vj + Ws (20)

so that

where

< : seg{v,..} (21)

&

j., (x) = 2J'=Xg(2 ax- k) (22)

A similar definition holds for the dual wavelet _. As

discussed in 3_, it is possible to defme dual wavelets

and _ associated with the biorthogonal

multiresolution analyses {V_}._z and {_ },, that satisfy

(_ tj ,t_... } = _ it,).i.,.) (23)

In particular, this can hold ff we find masks

{a,},{b,},{<} and {_} that satisfy the two scale

relationships:

where

9(t) = _/'2Y_ai`9(2t- k)
i`

_( t) = ._,'ffi`_( 2t- k )
k

V(t) = qt_]_ bi`9(2t_ k)

_(t)= x[-2_(2t-k)

(24)

k_

b, =(-1) a_l,+,

=(-1)%+,
(25)

If equations (24) and (25) are satisfied, fast multilevel
algorithms can be derived that project a function onto

various nested spaces. If f_V2, then f has a

representation

S = _,,,gs,,(_) (26)

via equation (18), or as

f = _a,_L,9,_,._(_)+ _ 13,_,._ ,_,., (_)(27)

from equation (20). Given the coefficients aj.i` in

equation (26), it is easy to show that we can find the

coefficients Ct__Lkand I_1_,., in equation (27)

4
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n

13,_,.,= Z _._2,%.,
n

(28)

As an example, we obtain

=

= Z (x,.fi,8 ,.=...
k,a

(29)

= Z a,_=,%.,
k

Equation (28) is the decomposition formula associated
with the set of biorthogonal wavelets (¢P,v)and (_,_).

A reconstruction formula can likewise be derived that

gives the f'me scale coefficients in terms of the coarse
scale.

(30)

These expressions can be used to obtain a multilevel
representation of the Volterm kernels. Assume that the
fLrst order Volterra kernel is expressed on the Freest
scale as

h,(_) = Z h,.,.p(p,.p(_) = Z ot,.p(p,.,(_) (31)
p P

where

(k+l)2 -I

h,j.p=_h_(_)X,.p(_)d_= Sh,(_)d_=aj., (32)
0 k2 -J

That is, we have identified X_,-cp,.p. With a

recursive application of equation (20), a multilevel
expansion of the first order kernel is obtained.

e,(¢)=} ,..,(¢)+ ,..,(¢)
+Z l_,..,V,.,(_)

p

+Z 13,,.,V,,,,(_)
P

+ZI3,,Nj.,({)
p

(33)

h,(¢)=

Similarly, if we define the tensor product scaling
functions

• "(_,n) = ,p'(g _'(n)
(34)

,t,(_,n) =o(_(n)

and the tensor product wavelets

w(_,n) =(p(_Rt(n)

W({,q) =v(_Yc(n)

'e'({,n) =v(_)v(n)

'e"(_,n) = (p"(g)v "(_)

w'(_,n) =v'(g_'(n)

'e'" (¢,n) =v "(g)v "(n)

(35)

we obtain the following single scale representation of
the second order kernel

h2(_,'q) = Y,(x, (,,)(I),.(, ,)(_,rl) (36)
r,s ' '

The corresponding two-scale exp_ion of the kernel is

h,(_,q) = Z%_,.(...,%_,.(...)(g,rl)

+ i _lZ I_,_,.(..., ,_,.(...,(_,n)
m,n

Z_ jl'.('.]) j--'l(''"} ({}_)

m.n

+ 3 _3Z 13,_,,,.,., ,_,.(...,(_,q)
m,n

(37)

The development of the multilevel representation of the
(nonlinear) second order kernel bears close resemblance
to equation (33). We refer the interested reader to the
details of the implementation of the ftrst and second
order kernels in 39

Numerical and Experimental Results

In a series of papers, the authors have derived,
implemented and tested reduced order models for the
prototypical nonlinear aeroelastic system depicted in
Figttre (5) on the next page. This system is comprised
of a NACA0012 airfoil that is capable of undergoing
large amplitude response in either the pitch or plunge
degrees of freedom. Any reasonable representation of
the response of this system is inherently geometrically
nonlinear owing to the unique design of the carriage on
which the airfoil is mounted. The details of the design,
shown schematically in Figure (6), are described in
detail in 4_.
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Figure 5: Prototypical nonlinear aeroelastic system

_ lqo_lle,¢_ Cam

Figure 6: Carriage design

This system has been designed to exhibit large
amplitude limit cycle oscillations in particular flow
regimes, and the performance of geometrically
nonlinear closed loop control methods is discussed in
4_ We note that a conventional representation of the
nonlinear dynamics of this system, that was sufficiently
accurate to derive closed loop flutter suppression
control laws, was employed in these previous studies. It
was comprised of two parametrically dependent,
coupled nonlinear ordinary differential equations of
second order. This is, perhaps, the simplest nonlinear
model that could be used to represent the system. The
pitch amplitude is so large that it may also be argued
that stall effects likewise contribute significant

nonlinear response that is not accounted for in the open
loop model employed in 41 In any event, in the current
numerical example, we study the performance of the
wavelet-based Volterra series system identification for

this example. Angle encoders provide a measurement
of the flap deflection as a function of time, which we
take as input to the wavelet-based kernel identification

algorithm. We choose the output to be the pitch angle,
also measured by angle encoders as depicted inFigure
(5), measured in radians. In this simple numerical
experiment, we consider the experimental records from
a single test in the identification process. The input
measured flap deflection, output measured pitch and
flow velocity in the tunnel are depicted in Figures (7),
(8) and (9), respectively.

2500

DATA SET #8: INPUT

20.00

1500

10005.00

0.00. oo
_ -10.00-1500

-2000

-2500

A n A a a h A A
I! I| | |

|
!

II tl tJ II
I/ V '4 V V' _ V V

TIME (s)

Figure 7: Experimental input - flap deflection

DATA SET #8: OUTPUT

0 30

0.20 . II I1

¢-..
'" 't' ,1

-0.40

TIME(s)

Figure 8: Experimental output - pitch angle

DATA SET #9: FLOW VELOCITY

24.20

2415 _,1 at

24_o ....1 ! t.,_.
; 1 I]/lllL/

24o_ L .. t t L.a ¢=u. , Ji, ._r=_._,,_.
24.00 Y'ldl_ _._,_'_i'!_B._I,I_ '_" _11
23.95 III _llll_lllr_r "]11 /l_ " _'111 _ "_| r i | 11

• _ ¢ -'1 " = "1
23.90

II
23.85

23.80

23 75

23.70

TIME(',=)

Figure 9: Flow velocity in the test section
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It is important to note that this experimental data

departs significantly from the framework presented in

this paper. Specifically, the system is parametrically
dependent on the flow velocity shown in Figure (9),
which is clearly not constant. If we note that the flow

velocity in the figure ranges between 23 and 24 m/s, it

might be argued that the system is "nearly stationary"
over the experiment. The implication is, of course, that

the simple form of the Volterra kernels presented
earlier are not applicable, strictly speaking. It is

possible, however, to derive Volterra series expansions
that are expressed in terms of time-dependent

kernels. These expansions are applicable for a class of
non-stationary systems, including the above-described

system. We anticipate that the identified Volterra
kernels should indeed vary parametrically with time for

the system under considemtiort The entire data set is
comprised of 2048 sample points. Using a sliding
window of 128 sample points, a weakly nonlinear

Volterra series representation comprised of only the 1't
order and 2_d order kernel was identified for the system.

For this specific numerical test, the first order kernel
was comprised of 4 terms, while the second order

kernel was comprised of a 4 x 4 array. It should be
noted that the 4 x 4 array is symmetric (see 42), so that

the cardinality of the Volterra series model is 4 +
(5*4/2) = 14 terms. As shown in Figure (10), graph of

the predicted output of the Volterra model is not
discernible from the graph of the experimental output.

CASE 9:4 NON-ZERO 1D TERMS, ,tx4 NON-ZERO 20 MAT RIX

0.2

0,1

i 'o

-0.2

.0.3

"0"44 26 28 30 32 34 36 3B 40 42

TiME(s)

Figure 10: Graphs of predicted output from model

identification and experimental output

Finally, the evolution of the kernels that comprise this
non-stationary system can be appreciated by

considering Figures (11) through (14). Figures (11)
and (12) depict the representation of the Volterra
kernels identified from the first and second sample

windows of the identification process. Each is

represented in terms of the same 14 basis functions,
although it is clear that there is a slight variation

between the sample windows that can be attributed to

the non-stationary nature of the _'stem under
consideration.

[ _JA. " : .-'2"4_::_:_'zx " " : " .

'-':'-:.. • ".:::i:!:i:i: :: : :::::::::::::::::::::::::::::::::::_:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

! ......:::i<_ ::i::i_ii_i_:iii_i!i::_ii:_:i:.:::::i_i!_jiii!i_i: _;_::_ .;
;_ _',_, .. =========================================================================================================: .

i .-.."::;_!:i;i_ii!!!!iiEi!!iiiiiiii_ii_iii#_ii_;iiii!::"_:'-:"_..i
,_ • _"¢"=:'X:_:_Eii_illi!ii_i:i:_::i?':¢':_._:.;aV`.-. :

::5_:_ " _,..: .- " " " :::::::':-" " " '

: ::>'i ""-. " ..*_-" "" _'::_

Figure 11: The 1 st sample window Volterra kernel

::re .. • : .
• - : ,.. .

: .. : ::.

:;: "_. ..:. .: . ! .

_,:-i :: : " ": - : .... . :

' i - i

{._ ."... ...... ' . ..,-- .........

Figure 12: The 2n_ sample window Volterra kernel !

In comparison, the Volterra kernels identified for the
13 th and 14 th sample windows, while quite similar to

one another, vary significantly from the Volterra
kernels for the 1't and 2_d sample windows. Again, this

is anticipated owing to the non-stationary character of
the physical dynamical system.

. . -" - ..
t:_,. ?, " : .-: " !

....] :_.ii_iiiiii_i:i::.:_: ::ii:_ii_?:ii_iii_ii?_ii:#_:.: :.:::::i:i:_:._:.. :..... ...:::ii!ili!iiiiii_:-iii:i::::iii_i_i_i::_i_i::iliiiii!iiii::_ii!::iiiiiiiii::iiii::_:_ .

| "_g_::::::::::::i:i:iii:i_i:i:i:i:ii_?::iii::::.:ili?::i:i:i_!_:_i_.'.-:_'__g

:f._: .... ,. _..,.,.^:...-_':_ .%)

;3 ;.',

Figure 13: The 13m sample window Volterra kernel
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Figure 14: The 14 th sample window Volterra kernel

Conclusions and Future Work

This paper has derived a wavelet and multiresolution
based methodology for obtaining reduced order

approximations of Volterra series. While Volterra
series representations provide a succinct
characterization of nonlinear system response in

principle, their use has been limited in practice due to
the large number of terms required to represent the

higher order, nonlinear terms. We show that a
consistent approximation of the Volterra input/output

representation is achieved ff two conditions are
satisfied:

(1) a zero order hold is used for the input and output

sequences, and
(2) a biorthogonal wavelet family is selected such that

the generator is dual to characteristic functions that
define the zero order hold.

The identification of a prototypical nonlinear

aeroelastic system is studied to evaluate the potential of
the derived method. The prototypical aeroelastic

system undergoes large amplitude, limit cycle
osciBations. The experimental data studied in the

numerical examples is non-stationary, due to the non-

negligible variations in wind tunnel velocity.
Nevertheless, the wavelet identification of the nonlinear

response was extremely accurate with the reduced order
wavelet models. For a sample record size of 2048 data

points and sliding window of 128 data points, the
nonlinear response character was captured with as few
as 14 wavelets. It was also shown that the nonlinear
second order kernel did evolve in time, which is to be

expected for the non-stationary nonlinear model.
However, the variation in the nonlinear second order
kernel was essentially slowly varying. One implication

of the numerical tests is that the migration of these

methodologies to on-line identification of Volterra
kernels should be investigated immediately.

This paper suggests several subsequent lines of

research. While the ability of the wavelet
representations to compress integral operators was

exploited implicitly, the methodology does not
currently make use of the explicit multilevel structure

that is available. For example, it is anticipated that
multilevel and multigrid methods can be used to

improve the convergence rate of the identification

procedure. Essentially, the method would perform
multiscale filtering of the input and output sequences a

priori, before the kernels of the nonlinear kernel are
estimated. The kernels themselves could then be

estimated on resolutions that correspond to the filtered

input and output sequences. Additionally, this paper

also suggests that there should be a careful study of
energy exchange in time-scale space for classical

nonlinear dynamical systems of aeroelasticity. The
structure of the kernels may be indicative of the time-

frequency, evolution of energy in the system. Finally,
the identification procedure suggested in this paper is
most useful when we can derive associated

compensators for the nonlinear Volterra series. Such
work has been studied in some classical texts, but the

specific forms of the desired compensators for the
multiresolution kernels have not been studied.
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